‘Fog harp’ makes water out of thin air

“Fog Harp”

In some of the most arid regions of the world, from the Sahara to the Andes, special nets have long been used to catch moisture from the air, turning fog into drinking water.
These fog harvesters are put up against wind streams to catch microscopic droplets which gather and merge on a fine mesh until they have enough weight to travel down into a water tank. They provide essential access to water to many communities, and the technology behind them has evolved over the years to offer a higher yield, resistance to the elements and a reduced need for maintenance.
Now, researchers at Virginia Tech University have developed a new design that they say has three times the efficiency of regular fog nets. They call it a “harp,” because its vertical pattern of wires makes it resemble the string instrument.

Written on Mar 19, 2018 by Gerard West

You think Earth has it bad? When it comes to extreme weather, Earth is tame compared to some of the other planets in our solar system.

Venus Has Sulphuric Acid Rain

Venus has a thick atmosphere made mostly of carbon dioxide. The thick atmosphere captures more of the sun’s radiation than Earth’s atmosphere does. In combination with the carbon dioxide, this makes the rain consist of sulphuric acid instead of water!

There are no known lifeforms on Venus, but if there were, they could count themselves lucky that the acid rain evaporates before it hits the ground. This is because the surface temperatures on Venus are so high.

Extreme Cold of Uranus

Uranus is the coldest planet in our solar system. Its temperatures can reach an extreme low of -371.2 F. However, Uranus also has a sparkling phenomenon—raindrops made of diamonds!

Extreme Blizzards on Mars

Have you ever used dry ice to create spooky fog on Halloween? Or to keep something perishable cold while shipping? If so, you know how frigid dry ice can be.

Mars has snow made of frozen carbon dioxide rather than water. So, instead of typical Earth snow, Mars’ snow is made up of dry ice!

Mercury’s Unbearable Temperature Changes

Unlike many of the planets in our solar system, Mercury has practically no atmosphere. Since it is so close to the sun, the temperatures can soar to a high of 800.6 F during the day, and then plunge to -277.6 F at night. This is because there is not a thick enough atmosphere to trap the warmth at night.

Mercury’s lack of an atmosphere also means no clouds, rain, wind, or storms.

So, the next time you are complaining about the weather, consider how lucky we are to only have Earth’s weather to contend with.

Our bodies in space: Zero gravity weighs heavy on your health
After a year in space, astronaut’s DNA no longer matches that of his identical twin



HomeBiogas 2.0 – Convert Food Waste to Energy — DudeIWantThat.com

In a way, we all produce HomeBiogas right inside our amazing bodies. And I don’t mean that just as a Beavis & Butthead joke (though, check out the biogas I’m making from these chili cheese jalapeno nachos, Beavis. Hehheh, heheh.) When we eat food, our bodies digest it, absorb the nutrients, and release the rest as waste.

With the HomeBiogas 2.0, it’s bacteria that are eating the food – in this case our own inedible or leftover food scraps, or animal manure – digesting and absorbing the nutrients they need, and releasing the rest as waste. It’s called biogas. And HomeBiogas 2.0 has figured out something way more productive to use the bacteria’s waste for than stinking your friend Cornelius out of the living room right at the big reveal in Arrival.

Read more at: http://www.dudeiwantthat.com/household/miscellaneous/homebiogas-20-convert-food-waste-to-energy.asp


Code Girls: The Untold Story of the American Women Code Breakers of World War II Paperback – October 9, 2018


The Radium Girls: The Dark Story of America’s Shining Women Paperback – March 6, 2018


The Boston Dynamics Robot Dog Can Now Call For Backup And Open Doors – Digg


Scientists Warn of a Global Cyber-Attack… From ALIENS
The 13th Floor

I should make two points clear up front: first, this story is sourced from a legitimate scientific publication and has been covered by major outlets (including the Washington Post), not just some fringe conspiracy site; second — and this should put your mind at ease for the moment — it’s purely a hypothetical thought experiment…. Read the full story

Shared from Apple News


green letterhead 800
For Immediate Release February 22, 2018NNSA Releases Draft Environmental Assessment for LANL Rad Lab; Raises Plutonium Limit 10 Times for Expanded Pit Production

Santa Fe, NM.  Today the National Nuclear Security Administration (NNSA) announced an Environmental Assessment (EA) to increase the amount of plutonium used in the Radiological Laboratory Utility and Office Building (AKA the “Rad Lab”) at the Los Alamos National Laboratory (LANL) from 38.6 grams of plutonium-239 equivalent to 400 grams. [See NNSA notice below.] This 10-fold increase is significant because it will dramatically expand materials characterization[1] and analytical chemistry[2] capabilities in the Rad Lab in support of expanded plutonium pit production for future nuclear weapons designs. It also re-categorizes the Rad Lab from a “radiological facility” to a “Hazard Category-3” nuclear facility.

There is currently no plutonium pit production scheduled for the existing nuclear weapons stockpile. Instead, independent scientists have concluded that pits last a century or more (without a proscribed end date), and the U.S. already has some 15,000 pits stored at the Pantex Plant near Amarillo, TX. Despite that, LANL is now tooling up to produce new pits for a proposed Interoperable Warhead that is supposed to replace existing warheads on the Air Force’s Minuteman III intercontinental ballistic missiles and the Navy’s sub-launched Trident missiles. However, the future of the Interoperable Warhead is still very much in doubt because the Navy doesn’t want it.[3]

In December 2015 the Defense Nuclear Facilities Safety Board (DNFSB) reported that then-DOE Secretary Moniz approved re-categorizing the Rad Lab “with a material-at-risk limit of 400 g plutonium- 239 equivalent.” [4] Starting in 2016, NNSA has already spent $2 million in the process to re-categorize the Rad Lab. However, the National Environmental Policy Act (NEPA) requires that federal officials conduct public review and comment before reaching a decision to commit “irretrievable resources” (such as taxpayer funding) to a proposed project. Hence conducting an environmental assessment (EA) after the fact arguably violates the law.

Moreover, NEPA also prohibits the “segmentation” of issues and requires that all “connected” actions be included in the same public review. This environmental assessment (EA) to raise the plutonium limit in the Rad Lab should not be a standalone document, but instead be part of a far broader programmatic environmental impact statement on expanded plutonium pit production.

NNSA will no doubt argue that this narrow environmental assessment to raise the amount of plutonium at the Rad Lab is legal because it merely seeks to replace the capabilities of the old and dangerous Chemistry and Metallurgy Research Building. However, this all goes back to the Department of Energy’s 1996 Stockpile Stewardship and Management Programmatic Environmental Statement, which resulted in a formal Record of Decision to relocate plutonium pit production at the Los Alamos Lab.[5] However, that decision specifically limited pit production at LANL to 20 pits per year because of the dangerous, deteriorating conditions at the old CMR Building, which the Rad Lab was to partially replace.

The larger Chemistry and Metallurgy Research Replacement (CMRR) Project “Nuclear Facility” was canceled in 2012 when project costs exploded from an originally estimated $600 million to as high as $6.5 billion. Following that NNSA decided without any NEPA review to pursue a 3-fold strategy to maintain plutonium operations at LANL by 1) raising the plutonium limit in the Rad Lab; 2) upgrading LANL’s main plutonium facility PF-4; and 3) building two or three underground “modular” facilities at $1 billion each.[6]

However, over the last decade plutonium operations at LANL have had a very troubled history. In February 2014 a radioactive plutonium waste drum improperly prepared by the Lab ruptured underground at the Waste Isolation Pilot Plant, contaminating 21 workers and closing that facility for nearly three years, at a cost of at least $1.5 billion to the taxpayer to reopen. Also during that time many major plutonium operations at PF-4 were suspended for three years because of serious nuclear criticality safety concerns.[7] As a result, NNSA is now openly considering whether to have expanded plutonium pit production at LANL or the Savannah River Site near Aiken, SC, or both, while the construction of underground modules at LANL seems increasingly unlikely.

Today’s draft environmental assessment claims that nothing has changed in the Rad Lab’s purpose and need since 2003, when an environmental impact statement was completed for the entire Chemistry and Metallurgy Research Replacement Project.[8] That statement is preposterous on its face because of the cancellation of the CMRR-Nuclear Facility alone. The draft environmental assessment itself states that the plutonium increase in the Rad Lab is expected to be “Sufficient for the combined RLUOB and PF-4 capabilities to satisfy anticipated programmatic needs for AC [analytical chemistry] and MC [materials characterization][9] (Emphasis added.). “Anticipated programmatic needs for AC and MC” are easily foreseeable as Congress has statutorily required the expansion of plutonium pit production to demonstrate the capability of producing up to 80 pits per year by 2027. More recently, the Trump Administration’s Nuclear Posture Review requires NNSA to “Provide the enduring capability and capacity to produce plutonium pits at a rate of no fewer than 80 pits per year by 2030.” (Emphasis added.) But the 1996 ceiling of 20 pits per year has never been officially raised following NEPA review, despite numerous NNSA attempts to do so.[10]

Jay Coghlan, Nuclear Watch Director, commented, “NNSA needs to get its NEPA house in order. Instead of this lessor environmental assessment to increase the amount of plutonium in the Rad Lab, there should instead be programmatic review of all aspects of expanded plutonium pit production, including the inevitable cost overruns, nuclear safety problems, and contamination. Most of all, the need for expanded plutonium pit production should be publicly and firmly established, instead of vaguely being for speculative future new nuclear weapons designs that aren’t needed and may actually degrade national security because they can’t be full-scale tested.”

# # # Draft Environmental Assessment Available for Public Comment

The National Nuclear Security Administration released a draft environmental assessment for public comment today that proposes operational changes to the Radiological Laboratory Utility Office Building (RLUOB) at Los Alamos National Laboratory.

NNSA prepared the Draft Environmental Assessment of Proposed Changes for Analytical Chemistry and Materials Characterization at the Radiological Laboratory/Utility/Office Building, Los Alamos National Laboratory, Los Alamos, New Mexico (Draft EA) (DOE/EA-2052), in accordance with the National Environmental Policy Act (NEPA).

This Draft EA evaluates the potential environmental impacts of recategorizing RLUOB from a Radiological Facility to a Hazard Category 3 Nuclear (HC-3) Facility with an increased material-at-risk limit of 400 grams of plutonium-equivalent material (PuE), which is 15 percent of PuE allowed in an HC-3 Facility.

Increasing the allowable radioactive material inventory from the current 38.6 grams of PuE to 400 grams would enhance the use of laboratory space in Technical Area55.

The proposed approach would allow some analytical chemistry and materials characterization capabilities previously planned for LANL’s Plutonium Facility-4 Building to be installed in RLUOB. The purpose of the EA will provide sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement or to issue a Finding of No Significant Impact.

The public is invited to comment on the Draft EA during the 30-day review period ending on March 26, 2018.  The Draft EA is available on the Department of Energy’s NEPA website. A copy of the Draft EA is also available for review at the Los Alamos National Laboratory Reading Room, 94 Cities of Gold Road, Pojoaque, NM 87506.

Comments may be submitted via e-mail at RLUOBEA@hq.doe.gov or U.S. mail at:  U.S. Mail:   NNSA Los Alamos Field Office, ATTN: CMRR Project Management Office, 3747 West Jemez Road, Los Alamos, NM  87544

[1] Materials characterization ensures that the plutonium and/or highly enriched uranium is of sufficient “weapons-grade” to begin pit production to begin with.
[2] Analytical chemistry performs up to a hundred quality control samples per pit as it is being produced.
[3] See 2012 Navy memo leaked to Nuclear Watch and Tri-Valley CAREs at https://www.nukewatch.org/importantdocs/resources/Navy-Memo-W87W88.pdf.
[5] That decision was prompted by a 1989 FBI raid investigating environmental crimes that abruptly stopped production at the Rocky Flats Plant near Denver, CO.
[6] The Rad Lab itself has increased from original actual costs of $400 million to build and equip to a total estimated cost of $1.4 billion to raise the plutonium limit and install additional equipment by 2026 for expanded plutonium pit production.
[7] See the investigative series Nuclear Negligence, Patrick Malone, Center for Public Integrity, https://apps.publicintegrity.org/nuclear-negligence/ The factual basis for that groundbreaking series is from the NNSA’s Performance Evaluation Report, which are publicly available because Nuclear Watch successfully sued for them in 2012.
[8] EA-2052: Proposed Changes for Analytical Chemistry and Materials Characterization at the Radiological Laboratory/Utility/Office Building, Los Alamos National Laboratory, Los Alamos, New Mexico, 1.2 Purpose and Need for Agency Action, p. 5, https://energy.gov/nepa/ea-2052-proposed-changes-analytical-chemistry-and-materials-characterization-radiological

[9] Ibid., page 10. [10] NNSA tried but failed to raise the pit production cap in the 2003 Modern Pit Facility environmental impact statement, the 2008 LANL Site-Wide Environmental Impact Statement, and the 2010 Complex Transformation Programmatic Environmental Impact Statement.

– Jay Coghlan Executive Director, Nuclear Watch New Mexico


Friends, Our work at Nuclear Watch IS making a difference, and YOUR support makes our work possible.

Please join us in this effort and help us press on at this critical juncture by making a tax-deductible contribution of whatever amount you can afford.You can make a donation  online at Nukewatch.org, or you can send a check to Nuclear Watch of New Mexico, 903 W. Alameda #325, Santa Fe NM 87501


Still hungry for facts? All you can eat at www.nukewatch.org! Our website keeps expanding and adding new sections; Have you visited lately

 Nuclear Watch New Mexico, 903 W. Alameda #325, Santa Fe, NM 87501