That technique is problematic for several reasons. For one, it’s expensive, which means that it isn’t accessible in the poorer rural areas of the world where the majority of snake bites occur. It also needs to be refrigerated, making storage and shipping tricky, and most antivenoms are only effective against bites from a single species of snake. The UCI team says their synthetic solution could solve all of these issues.
“Current antivenom is very specific to certain snake types,” says Jeffrey O’Brien, lead author of the study. “Ours seems to show broad-spectrum ability to stop cell destruction across species on many continents, and that is quite a big deal. Our treatment costs pennies on the dollar and, unlike the current one, requires no refrigeration. It feels pretty great to think this could save lives.”
The team’s treatment, which they call a “nanodote,” is built around a specially-designed polymer nanogel. When injected, nanoparticles in the material absorb the venom by binding to certain protein toxins that are common to several species of deadly snakes. These particles sequester and neutralize the toxins, keeping the poison from attacking red blood cells and causing the serious hemorrhaging that can sometimes be fatal.
Since the nanodote ingredients are easy to obtain, it’s much cheaper to produce than the current antidotes, and can sit unrefrigerated for much longer. That means it could be shipped at low-cost to remote areas as part of a standard medical package to treat bites from a variety of snake species.
(For the balance of this article see: https://newatlas.com/snake-antivenom-nanogel/48299/)